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A BOUNDARY ELEMENT METHOD FOR A NON-LINEAR 
FREE SURFACE PROBLEM 
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SUMMARY 
In this paper a numerical method to compute the wave resistance of a body submerged in a free stream of 
finite and infinite depth is presented. Non-linear effects on the free surface are taken into account by an 
iterative procedure; the solution is in the form of a single-layer potential. For the 2D problem, results are 
shown for both the cases of finite and infinite depth of the fluid domain, with special emphasis on the 
supercritical flow in which the consistency of the scheme is pointed out. The method is also extended to the 
3D case of a spheroid submerged in deep water. All the results presented are compared with experimental 
data and analytical solutions available in the literature. 

KEY WORDS Free boundary problem Potential flow Wave resistance BEM 

1. INTRODUCTION 

In the present work the wave resistance problem is studied from a numerical point of view. 
A simple shaped body submerged in a free stream of finite and infinite depth is considered. The 
perturbation of the free surface (due to the presence of the body) and the pressure field around the 
body itself are computed, the potential flow being solved by means of the boundary element 
method. This is a basic problem of great practical importance in naval engineering: the optimum 
ship hull, from the resistance point of view, is the one producing the smallest amplitude waves.' 
Many theoretical studies on the ship wave resistance problem are available in the 
Experimental methods have also been proposed.*s9 A systematic presentation and a complete 
bibliography are given in References 1 and 10. 

In recent years, several researchers have been studying ship waves by means of numerical 
methods that allow one to solve the problem by taking into account the non-linear behaviour of 
the free surface, which is neglected in the analytical and experimental methods mentioned above. 
Dawson" proposed a simple numerical method, based on the linearized free surface conditions, 
which is useful for practical applications to low-Froude-number ship motions. However, as the 
Froude number grows, the non-linear effects become more and more important. For this reason, 
there has been a rapid development in non-linear numerical methods.", l3 

In the present work the ideas expressed in Reference 12 are followed, but we use an implicit 
numerical scheme for the non-linear terms and different assumptions in deriving the non-linear 
free surface boundary conditions by means of a Taylor series. Some numerical results for two- and 
three-dimensional simple shaped submerged bodies have been obtained. The non-linear method is 
compared with the linear one and with the experimental data taken from Reference 12 for the 2D 
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case of an elliptical cylinder submerged in deep water. This last body has also been considered in a 
finite depth domain (see Reference 14 for existence and uniqueness of the solution) in both the 
cases of subcritical and supercritical flow. The capability of the proposed numerical procedure to 
follow the peculiar behaviour of the physical phenomenon is shown in comparison with the 
experimental data available in Reference 15. Finally, in the 3D case the solution obtained has been 
compared with the analytical solution given in Reference 16. 

2. THE MATHEMATICAL MODEL 

We consider the irrotational steady state flow of an incompressible fluid past a submerged body. 
The fluid domain is bounded above by a free surface and unbounded in the other directions. The 
velocity scalar potential satisfies Laplace’s equation inside the fluid field: 

V z @ ( x , y ,  z)=O, ?c,y,~, ,~IW~\Sn{z:-co<z<r(x,y)} ,  (1) 
where S= B u J B  c R3 is the body and [ ( x ,  y )  expresses the free surface which will be denoted by S. 
Equation (1 )  is associated to the following boundary conditions: 

Q,,,rx + oyry - (4 = 0 on S, (2) 

lim V Q , = U , .  
x - - z  

In the case of finite depth, the following boundary condition has to be imposed at the bottom: 

on = 0. (6) 

The solution of the problem (1)-(5) is computed by means of a numerical method based on an 

The potential Q, is expressed as the sum of three terms: 
integral formulation that implies a second-type Fredholm equation. 

Q,=u ,x+cp+ iJ ,  (7) 

where the first term is the undisturbed flow potential, the second term is the double model 
potential which takes into account the interaction among the free stream, the body and its image, 
and the third term is the perturbation potential due to the presence of the free surface as well as its 
coupling with the body. If the bottom is considered, an additional term must obviously be 
included. 

3. THE FREE SURFACE BOUNDARY CONDITIONS 

The problem (1)-(5) is non-linear because of the presence of quadratic terms in the free surface 
conditions (2) and (3) and also because these conditions are to be applied on the unknown surface 
S. A great simplification is introduced by considering the Taylor series expansion around the plane 
z = O  (undisturbed free surface) of conditions (2) and (3). We obtain an approximation scheme that 
assumes the flow to be a small perturbation of an undisturbed free surface flow and the shape of 
the free surface itself to be sufficiently smooth. Hereafter, in order to avoid cumbersome notation, 
only the 2D case is described: 

a 
K X ( 1  + cpx+ iJJ- i J J Z  = o  + C C X ( l +  cpx + i J J -  4 5 z I r = O  t;= W), (8) 
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(9) 
where Fr = U,/J(gL) is the Froude number and L is the body length. 

Using (8) and (9), the following free surface boundary conditions are deduced in the linear case: 

C X ( 1  + cpx) - @% = 0, 

r = - (Fr2/2)C2(cpx + @x) + cp: + 2cpx@xl; 

(10) 

(1 1) 
and in the non-linear case 

4. THE NUMERICAL MODEL 

In the discrete problem the surface of the body aB and a local portion of the undisturbed free 
surface S are discretized with linear elements; the total numbers of body and free surface panels are 
respectively BE and SE. A discrete distribution of piecewise-constant simple sources extending 
over these surfaces, with surface densities o, A a  and d, generates the simple layer potentials 

BE 

BE SE 

@i = 1 Aoj ij kijdlj+ dj 6, gij dlj 
j=  1 j =  1 

in which 

where p is a field point, q ( d B  or S) is a source point and qi(EaB*) is a source point, with aB* the 
image of aB above the undisturbed free surface. In the 3D computation Ip - q(  - is used instead of 
the logarithmic kernel. 

In order to initialize the iterative procedure, we first need to compute the double model source 
strength using condition (4) (once this problem is solved, the value of cp'is known definitively): 

(16) 

kij=loglpi-qBjI+loglpi-q,*jI, gij=logIpi-qSjl, 

A n 
(1 + cpx,)cos xni + cpz, cos zni = 0, i E BE. 

Then the perturbation potential source strength can be computed using linear conditions (10) 
and (1 1): 

A n 

(17) 
QX, cos xn, + GZ, cos zni = 0, iEBE, 

i E SE, (1 + cpx,)cpxx, $x i  + (1 + cpX,l2 GXX, + (1/Fr2)$zr = - (1 + (PX,l2 cpxx., 

where 

with analogous expressions for cpx, eZ and cpz. The linear wave elevation can be calculated next 
from (1 1). 
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The knowledge of the value of cp and of the linear approximations of 4 and [ allows one to start 
the following iterative procedure: 

( K - y x , ( K ) @ x ,  - ( K ) @ z ,  + ~ ~ ~ ~ x x , ~ ~ - ~ ~ ~ i = ~ K - ~ ~ ~ x ~ ( l  + cp,,)- ( K - 1 )  c j c p x x , ,  

n n (19) 
( K ) @ , ,  cos xn,  + ( K ) @ = ,  cos zni = 0, 

until the difference between two successive locations of the free surface is sufficiently small. In 
order to avoid convergency problems, relaxation factors have been introduced in ( 1  9) and (20). 

Finally, the wave resistance is computed by 

We remark that the discretization of the second derivative appearing in (17) and (20) has been done 
by using a finite difference scheme; since the numerical solution depends strongly on the 
discretization used, numerical tests have been carried out to verify that the second-order four- 
point upwind operator, proposed in Reference 11, satisfies the asymptotical behaviour of a 
constant amplitude wave for the disturbance generated by a body in deep water. The proposed 
method has also been validated in the peculiar case of finite depth supercritical flow, in which the 
amplitude of the perturbation generated by the body should be rapidly damped. 

5. NUMERICAL RESULTS 

The numerical method has been used first to compute the wave pattern due to an elliptical cylinder 
moving with constant speed under the free surface at different Froude numbers. The numerical 
solutions computed by the linear and non-linear methods have been compared with a set of 
experimental data given in Reference 12. 

Figure 1 shows the wave pattern as the Froude number increases. If this number is relatively 
small (case (a)), the three curves are almost coincident; when it is larger, the wave pattern 
computed by the non-linear method gives a better fit to the experimental data (case (b)). The last 
case shows the failure of both the numerical models at the highest Froude number, because they 
are not able to follow the onset of the breaking wave phenomenon. 

Figures 2 and 3 show the computations made in order to check the capability of the proposed 
method when the bottom is considered. In Figure 2 the subcritical case is shown, where the 
amplitude of the downstream perturbation is constant. The pattern of a supercritical flow is 
described in Figure 3, where the perturbation is damped almost immediately, as expected. This 
behaviour is shown in Figure 4, which reproduces the experimental results from Reference 15. 

Finally, the method has been applied in the Neumann-Kelvin formulation” to compute the 
wave pattern and the wave resistance for submerged spheroids. 

In order to establish the minimum undisturbed free surface area that needs to be discretized and 
the minimum number of panels per wavelength, NPA (assuming the wavelength to be 2nU :/g), a 
large number of numerical tests have been carried out. Figure 5 shows how the effect of a reduction 
in NPA gradually influences the value of the wave resistance obtained. The same figure also shows 
how the computed wave resistance depends on the downstream extension of the free surface 
panelled region when NPll is given (in this case N P I  = 24). 

In Figure 6 the downstream perturbation behaviour is depicted for two bodies (sphere and 
prolate spheroid with eccentricity 0.9165) and for two values of the Froude number. In Figure 7 a 
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Figure 1. (a. b) 
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Figure 1. Two-dimensional wave pattern generated by a submerged elliptical cylinder in deep water; sa/sb = 4 (sa and sb 
are the major and minor semi-axes),flsa = 1.7 (fis the depth of the body centre). Froude number Fr= U,/J(2 x sa x 9): 
(a) 0.50; (b) 0.53; (c) 0.57. Key: o o o o 0, experimental data;12 -- - - - - - - , linear method; -~ ----, non-linear 

method 

Figure 2. Numerical visualization of subcritical flow in a finite depth domain (U,/J(gh)=0.4,  where h is the undisturbed 
free stream depth); linear formulation 
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Figure 3. Free surface profile of supercritical flow in a finite depth domain (LI,/ , /(gh) = 1.2); linear formulation 

Figure 4. Supercritical flow (U, / , / (gh)=2) .  The free surface follows the shape of the obstacle without showing any 
downstream perturbation; the photograph is taken from Reference 15 



1202 E. CAMPANA, F. LALLI AND U. BULGARELLI 
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Figure 5. Computed wave resistance for a submerged sphere (flsa = 2, Fr = U , / , / ( g f )  =0.7): - - - - - - - -, versus NPI, 
with a fixed downstream extension of the panelled free surface, equal to 26- , versus the downstream length, with 

NPI, = 24 
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Figure 6. Three-dimensional wave pattern generated by a sphere and a prolate spheroid (e=0.9165) submerged in deep 
water ( f / s b  = 2.0, Fr= U , / J ( g f ) :  (a) sphere, Fr=  0.60; (b) spheroid, F r = 0 . 6 0  (c) sphere, F r = 0 7 5 ;  (d) spheroid, Fr = 0 7 5  
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Figure 7 .  Wave resistance for submerged bodies as a function of the Froude number ( F r = U , / , / ( g f ) ,  sa'/sa"=5/2); 
, Havelock (analytical);'" 0, linear method for the prolate spheroid; A ,  linear method for the sphere 

comparison is made between the analytical solution obtained in Reference 16 and the numerical 
results computed with the present linear method for the wave resistance of the same bodies. 
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